Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 310: 578-88, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26431622

RESUMO

Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs.


Assuntos
Ácidos Acíclicos/metabolismo , Ácidos Acíclicos/toxicidade , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Benzoxazinas/farmacologia , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Glutaril-CoA Desidrogenase/deficiência , Morfolinas/farmacologia , Naftalenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/toxicidade , Glutaril-CoA Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ácido Metilmalônico/metabolismo , Ácido Metilmalônico/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Propionatos/metabolismo , Propionatos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
2.
Neuroscience ; 308: 64-74, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26343296

RESUMO

The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and nitrosative stress. Therefore, QUIN can be hypothesized to contribute to the pathophysiology of brain degeneration in children with metabolic acidemias.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Ácido Quinolínico/metabolismo , Sinaptossomos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Glutaratos/toxicidade , Glutaril-CoA Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ácido Metilmalônico/metabolismo , Ácido Metilmalônico/toxicidade , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Propionatos/metabolismo , Propionatos/toxicidade , Ácido Quinolínico/toxicidade , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sinaptossomos/efeitos dos fármacos
3.
Neuroscience ; 304: 122-32, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26188285

RESUMO

Phytanic acid (Phyt) accumulates in various peroxisomal diseases including Refsum disease (RD) and Zellweger syndrome (ZS). Since the pathogenesis of the neurological symptoms and especially the cerebellar abnormalities in these disorders are poorly known, we investigated the effects of in vivo intracerebral administration of Phyt on a large spectrum of redox homeostasis parameters in the cerebellum of young rats. Malondialdehyde (MDA) levels, sulfhydryl oxidation, carbonyl content, nitrite and nitrate concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, total (tGS) and reduced glutathione (GSH) levels and the activities of important antioxidant enzymes were determined at different periods after Phyt administration. Immunohistochemical analysis was also carried out in the cerebellum. Phyt significantly increased MDA and nitric oxide (NO) production and decreased GSH levels, without altering tGS, DCFH oxidation, sulfhydryl oxidation, carbonyl content and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD). Furthermore, immunohistochemical analysis revealed that Phyt caused astrogliosis and protein nitrosative damage in the cerebellum. It was also observed that the NO synthase inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME) prevented the increase of MDA and NO production as well as the decrease of GSH and the immunohistochemical alterations caused by Phyt, strongly suggesting that reactive nitrogen species (RNS) were involved in these effects. The present data provide in vivo solid evidence that Phyt disrupts redox homeostasis and causes astrogliosis in rat cerebellum probably mediated by RNS production. It is therefore presumed that disequilibrium of redox status may contribute at least in part to the cerebellum alterations characteristic of patients affected by RD and other disorders with Phyt accumulation.


Assuntos
Astrócitos/metabolismo , Cerebelo/metabolismo , Estresse Oxidativo/fisiologia , Transtornos Peroxissômicos/fisiopatologia , Ácido Fitânico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Animais , Astrócitos/patologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Modelos Animais de Doenças , Gliose/patologia , Gliose/fisiopatologia , Homeostase/fisiologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Peroxissômicos/patologia , Ácido Fitânico/administração & dosagem , Ratos Wistar , Fatores de Tempo
4.
Neuroscience ; 277: 281-93, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25043325

RESUMO

High accumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of patients affected by the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (D-2-HGA). Clinically, patients present neurological symptoms and basal ganglia injury whose pathophysiology is poorly understood. We investigated the ex vivo effects of intrastriatal administration of D-2-HG on important parameters of redox status in the striatum of weaning rats. D-2-HG in vivo administration increased malondialdehyde (MDA) and carbonyl formation (lipid and protein oxidative damage, respectively), as well as the production of reactive nitrogen species (RNS). D-2-HG also compromised the antioxidant defenses by decreasing reduced glutathione (GSH) concentrations, as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Increased amounts of oxidized glutathione (GSSG) with no significant alteration of total glutathione (tGS) were also found. Furthermore, D-2-HG-induced lipid oxidation and reduction of GSH concentrations and GPx activity were prevented by the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) and the nitric oxide synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME), suggesting the participation of NMDA receptors and nitric oxide derivatives in these effects. Creatine also impeded D-2-HG-elicited MDA increase, but did not change the D-2-HG-induced diminution of GSH and of the activities of SOD and GPx. We also found that DCFH oxidation and H2O2 production were not altered by D-2-HG, making unlikely an important role for reactive oxygen species (ROS) and reinforcing the participation of RNS in the oxidative damage and the reduction of antioxidant defenses provoked by this organic acid. Vacuolization, lymphocytic infiltrates and macrophages indicating brain damage were also observed in the striatum of rats injected with D-2-HG. The present data provide in vivo solid evidence that D-2-HG disrupts redox homeostasis and causes histological alterations in the rat striatum probably mediated by NMDA overstimulation and RNS production. It is therefore presumed that disturbance of redox status may contribute at least in part to the basal ganglia alterations characteristic of patients affected by D-2-HGA.


Assuntos
Corpo Estriado/efeitos dos fármacos , Glutaratos/toxicidade , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Creatina/farmacologia , Maleato de Dizocilpina/farmacologia , Glutaratos/metabolismo , Glutaratos/farmacologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Malondialdeído/metabolismo , N-Metilaspartato/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Free Radic Res ; 47(12): 1066-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24127998

RESUMO

3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a disorder biochemically characterized by the predominant accumulation of 3-hydroxy-3-methylglutarate (HMG), 3-methylglutarate (MGA), 3-methylglutaconate and 3-hydroxyisovalerate in tissues and biological fluids of the affected patients. Neurological symptoms and hepatopathy are commonly found in HL deficiency, especially during metabolic crises. Since the mechanisms of tissue damage in this disorder are not well understood, in the present study we evaluated the ex vivo effects of acute administration of HMG and MGA on important parameters of oxidative stress in cerebral cortex and liver from young rats. In vivo administration of HMG and MGA provoked an increase of carbonyl and carboxy-methyl-lysine formation in cerebral cortex, but not in liver, indicating that these metabolites induce protein oxidative damage in the brain. We also verified that HMG and MGA significantly decreased glutathione concentrations in both cerebral cortex and liver, implying a reduction of antioxidant defenses. Furthermore, HMG and MGA increased 2',7'-dichlorofluorescin oxidation, but did not alter nitrate and nitrite content in cerebral cortex and liver, indicating that HMG and MGA effects are mainly mediated by reactive oxygen species. HMG and MGA also increased the activities of superoxide dismutase and catalase in cerebral cortex and liver, whereas MGA decreased glutathione peroxidase activity in cerebral cortex. Our present data showing a disruption of redox homeostasis in cerebral cortex and liver caused by in vivo administration of HMG and MGA suggest that this pathomechanism may possibly contribute to the brain and liver abnormalities observed in HL-deficient patients.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Antioxidantes/metabolismo , Córtex Cerebral/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Homeostase , Fígado/enzimologia , Fígado/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...